
From: Richard C Ballantyne [e-mail redacted]
Sent: Friday, September 24, 2010 1:31 AM
To: Bilski_Guidance
Cc: [e-mail redacted]Subject: Bilski Ruling and software patent eligibility

Dear USPTO,

As a developer of custom software for Goodrich in Ithaca, New York, I request
that you please stop issuing patents for software ideas. It is practically
impossible for me to know if the ideas I implement while developing software are
already patented. First, my employer does not authorize me to verify that the
code I create does not infringe the hundreds of thousands of software idea
patents already issued by the USPTO. Second, to my knowledge, my employer
does not employ someone to verify that the code I create does not infringe
software idea patents. Third, even if my employer did allow me to check if I was
infringing software idea patents, it would be impossible for me to do; the rate at
which software patents are issued far exceeds the rate at which I can read
them. Finally, I am not a lawyer and do not understand the legalese used in
many software idea patents. The bottom line is that there is no practical
disclosure mechanism for software patents due to their sheer volume.

I have friends who develop software for small software companies. They often
complain about the patent minefield they must walk through. Some have
received threats from larger companies with huge software patent
arsenals. Others are forced to enter expensive cross licensing agreements in
order to stay in business. It is prohibitively expensive for them to hire a patent
lawyer. A few have just thrown up their arms in frustration and decided to work
for a larger company in order to avoid liability. Larger software development
companies such as Microsoft, Apple, and Adobe have huge patent arsenal which
they can use for defensive purposes. My brother, who is a senior software
design engineer at Microsoft and my sister who is a patent lawyer have admitted
to me in private that there are serious problems with the patent system especially
in regards to software idea patents.

From my experience software patents do more harm to the vast majority of
businesses and society than good. This includes businesses that are not in the
business of making software. The reality is that:

1) Software idea patents do not "promote the progress of science and useful
arts" because they stifle innovation. Software idea patents make it unfordable for
SMEs to develop new software safely. A recent example of how software
patents stifle innovation are the problems that have arisen for the HTML open
standard in adding support for streaming video.

2) Software idea patents reduce the quality of software by allowing companies to
push closed file formats which cannot be read or written to using third party
software such as Free Software. The bottom line is that computers are harder to

use than they need to be because the software on them is artificially limited.

3) Software is not patentable subject matter since all software that is actually run
is always reduced to a series of mathematical operations. It is a fact that
mathematical operations are simply "laws of nature" and are thus not
patentable. It is a fact that laws of nature can only be discovered and not
invented. It is a fact that in software, the exact sequence of mathematical
operations is discovered by the compiler the vast majority of the time. Expecting
the creators of compilers (or other software that dynamically creates other
software) to anticipate future software idea patents and then change their
compilers to prevent outputting patented mathematical operation sequences is
practically impossible.

4) Software is very different from most patentable technologies. First, software
is simply information that takes an intangible form. There is not one patent for
one software product, as it is with many physical products. Second, the cost of
the tools used to create software is essentially free. Last week I just picked up
four computers for free at my local recycling center. I regularly use the Free
Software compiler GCC, and Free Software IDE Eclipse to author new
software. Just like anyone can author a book using simply a pen and a stack of
paper, or record some music using their computer, anyone who can read and do
math can also learn how to program and author software using a low cost or free
computer. Books, music, and videos are not patentable subject matter and
neither should software. Software is simply mathematical information and is
already protected by copyright like other forms of information (videos, music,
books, etc). Software does not need to be "protected" by patents too.

5) Even the simplest software, such as the "Hello World" program, is built using
thousands of different ideas. This is because to create anything useful in a
reasonable amount of time, developers use existing software functions stored in
libraries (such as a DLL). They often bundle these libraries into their released
software. It is practically impossible for developers to know which functions in
these libraries already contain patented ideas.

6) The 20 year duration of patents is an eternity in the realm of software. The
USPTO should immediately reduce the term from 20 years to 2 to 5 years for
software idea patents while it investigates whether or not to abolish software
patents.

7) Most software (except Open Source or Free Software) is released in a
compiled format -- in machine language that is effectively impossible for humans
to understand. Thus many patents cover "inventions" that have been in the
public domain for years. However, since the source code which humans can
understand is unavailable, it cannot be proven that the patents issued cover
"inventions" which are already in the public domain.

8) Many obvious software "inventions" end up getting patented, such as the "one

click" patent that was awarded to Amazon, and the "auto-filling" feature in

spreadsheets. Is this because patent examiners are experiencing the same

frustrations that developers face? There are too many existing software idea

patents to wade through in order to determine if a new software idea patent

should be issued.

The USPTO can, and should, exclude software from patent eligibility on at least

these legal grounds: software consists only of mathematics, which is not

patentable, and the combination of such software with a general-purpose

computer is obvious. Software patents just drive up costs and frustrate users

who are forced to use software that is artificially limited. I foresee rapid advances

and improvements in software as soon as the patent office abolishes software

patents.

Thank you for giving the public an opportunity to suggest guidance for the

USPTO in the wake of the Bilski ruling.

Sincerely,

Richard Ballantyne

(Software Engineer at Goodrich Corporation

